
EIP-AGRI Workshop Tools for environmental farm performance

7 - 8 February 2017 – Zagreb, Croatia

EIP-AGRI Workshop 'Tools for environmental farm performance' Tuesday 7 February 2017, Zagreb - Croatia

12:00 – 13:00 Registration and buffet lunch

13:00 – 13:10 Welcome words

- Iman Boot, DG Agriculture and Rural Development
- Krešimir Ivanĉić, Croatian Ministry of Agriculture

13:10 - 13:20 Icebreaker

13:20 – 13:40 Introduction to the theme of the workshop by DG AGRI

13:40 – 14:00 Setting the scene by the coordinating experts of the workshop

14:00 – 14:45 Elevator pitches, highlighting the three main reasons for which farmers may use sustainability tools (farm initiative, food chain, legislation)

Consecutive panel reflections

- Martijn Buijsse, Skylark, The Netherlands
- Vincenzo Angileri, Joint Research Centre, European Commission
- Simon Miller, Cool Farm Tool, UK

14:45 – 15:45 Presentations of existing environmental sustainability tools

- · John Lynch, TEAGASC, Ireland
- · Romain Dieulot, FNCIVAM, France
- Kathryn Green, LEAF, UK
- François Lerin, CIHEAM-IAMM & HNV-Link Thematic Network, France
- Josien Kapma, Boer & Bunder, The Netherlands
- · Dóra Mészáros, SMART, Hungary

15:45 - 16:15 Coffee break

16:15 - 18:00 Break-out sessions

19:00 Networking dinner

EIP-AGRI Workshop 'Tools for environmental farm performance' Wednesday 8 February 2017, Zagreb - Croatia

09:00 – 09:30 Energiser exercise
Summary of previous day and conclusions by coordinating experts
Janet Dwyer and Marta Pérez-Soba

09:30 - 10:30 Break-out session

- What does the ideal tool look like to you?
- What can you do to make such a tool become a reality?

10:30 - 11:00 Coffee break

11:00 – 11:45 Break-out session (continued)

 If you would start an EIP-AGRI Operational Group to design the ideal tool, what would be the main problem to solve or opportunity to take, who would be the partners and how would you design the project?

11:45 – 12:00 Harvesting

12:00 - 12:30 Plenary session

• What happens after the event? Concrete ideas for follow-up actions

12:30 - 13:30 Lunch and departure

EIP-AGRI Workshop 'Tools for environmental farm performance'

John Lynch

Rural Economy and Development Programme, Teagasc, Athenry

Environmental Farm Performance Tools in Ireland

- Greenhouse gas emissions
 - Carbon navigator (dairy + beef)
- Nutrient balance
 - Nutrient management plan

Carbon navigator

- Tool aimed to show farmers 'win-win' efficiency gains
 - Reduce emissions and increase profitability
- Dairy and beef versions
- Completed by advisor/consultant and farmer together
- Input current herd and management details
- Discuss and set targets to reduce with advisor
- Uptake linked with funding and/or assurance scheme
 - Dairy Carbon navigator part of Bord Bia Sustainable Dairy Assurance
 - Beef Carbon navigator part of Beef Data and Genomics Programme

This facility will apply Farm Enterprise Information collected at the last audit to the Carbon Navigator.

Herd	A9999000	Update	Download Excel File	Input another herd number
Farmer Name	Dan Murphy			
County	Galway West	t	~	
Soil Type	Moderately D	rained 🗸		
Area farmed (ha)	35			
Average number of suckler cows	38			
Average number of	35			

Possible actions to reduce GHG emissions

Grazing Season Length:

☐ Focus on effective autumn and spring grassland management. Give particular attention to minimising
damage, backfenceing if necessary to limit poaching
☑ Early nitrogen is essential for early grass. Spread 33 Kg/Ha from mid-February weather permitting
☐ Carefully manage early spring grazing, limiting grazing time in wet conditions
✓ Manage soil fertility - sample your soil and apply P, K and lime as required
☐ Monitor grass covers to ensure that good quality grass is available at all times
☑ Improve your grassland management throu Sharing experiences in a dairy discussion group is the most
effective way to improve skills.

Grazing Season Length:

Early nitrogen is essential for early grass. Spread 1.5 bags of Urea Kg/Ha from mid-February weather permitting.

Manage soil fertility - sample your soil and apply P, K and lime as required

Improve your grassland management throu Sharing experiences in a dairy discussion group is the most effective way to improve skills.

Grazing Season Length:

Early nitrogen is essential for early grass. Spread i.5 bags of urea from mid-February weather permitting

Manage soil fertility - sample your soil and apply P, K and lime as required

EBI:

Choose a panel of 5 high EBI bulls that compliment your herd. For most farmers fertility is the main weakness that needs to be improved.

Focus on your heifers - breeding heifers to carefully selected high EBI bulls is the fastest way to improve herd EBI and profitability

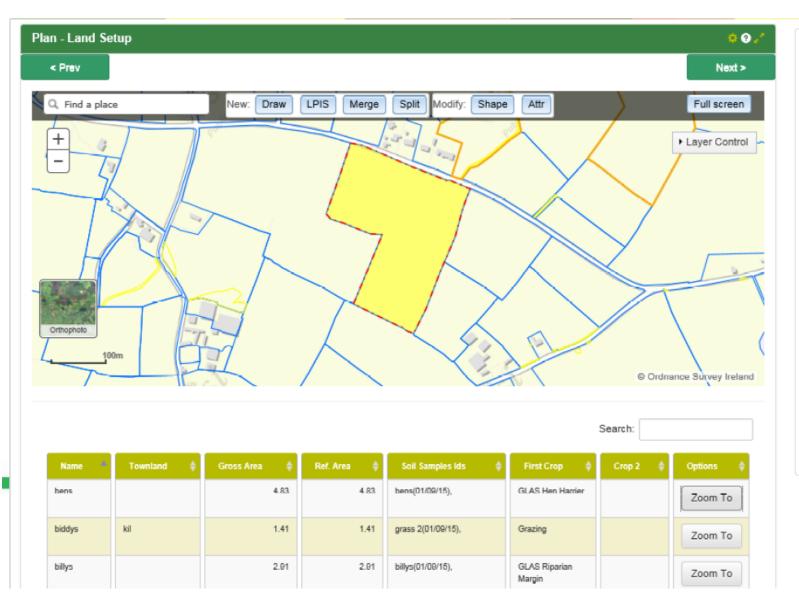
Order sufficient straws, e.g. 55 straws per 10 heifers required

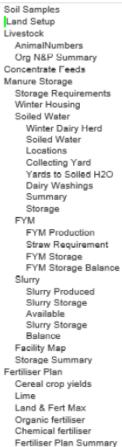
Nitrogen efficiency:

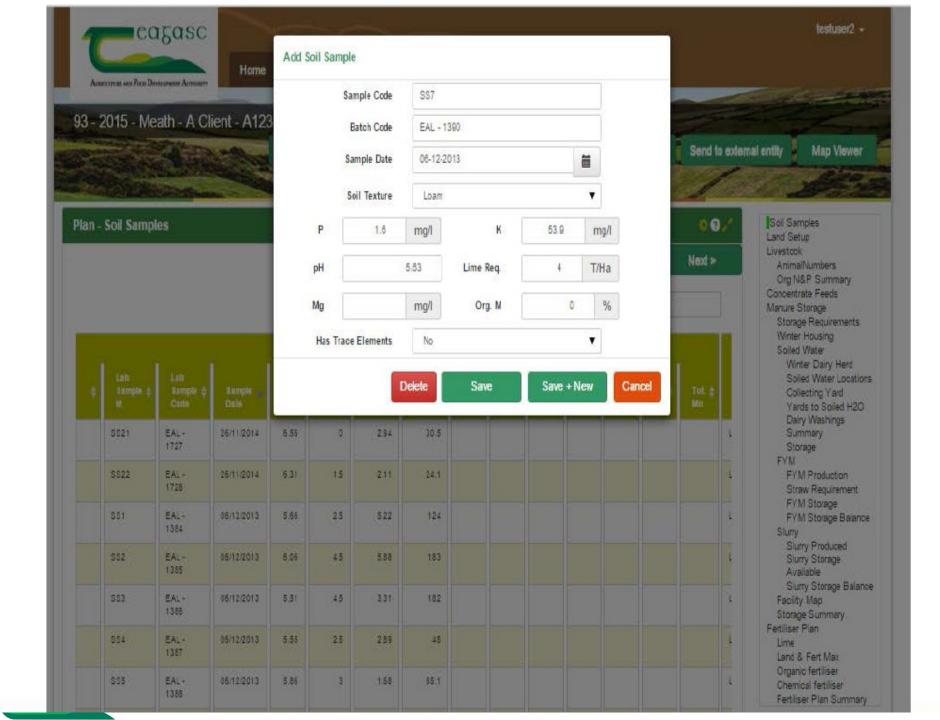
Use urea, especially early in the season.

Try treated urea on a portion of the farmer for late spring, early summer applications.

Slurry Spreading:


Join GLAS selecting Low Emissions Spreading Option


CO{Energy Use:


Nutrient Management Plan

- Mapping based tool for nutrient efficiency
- Input map and crop data, livestock, soil data
- Advisor consultation with farmer
- Outputs farmers plan in form of map
- Statutory plan in form of applications and activities undertaken
- Mandatory for GLAS (EU co-funded agri-env scheme) and derogation

The Irish Agriculture and Food Development Authority

EIP-Agri

Famer tools for environmental performance

d edge ponds

Output

Farmscoper (ADAS)

http://www.adas.uk/Service/farmscoper

edge ponds

Output

Table 5-3 Mitigation methods and agreed levels of prior uptake representing the present day, circa 2010. The modifiers refer to the lettered categories, such that a 'C' baseline value modified by -1 becomes a 'B'. Note that implementation rates for methods named in italics are based solely on expert opinion.

			Baseline	Values	Modifiers		
— Group	ID	Method Name	Free Draining	Other Soils	NVZ	Intensive Grazing	Extensive grazing
1	4	Establish cover crops in the autumn	С	В		-1	-1
1	5	Early harvesting and establishment of crops in the autumn	E	E			
1	6	Cultivate land for crops in spring rather than autumn	F	В			
1	7	Adopt reduced cultivation systems	С	E		-1	-1
1	8	Cultivate compacted tillage soils	D	D		-1	-1
7	9	Cultivate and drill across the slope	D	C			
1	10	Leave autumn seedbeds rough	D	D		-1	-1
7	11	Manage over-winter tramlines	D	D		-1	-1
7	13	Establish in-field grass buffer strips	В	В			
7	14	Establish riparian buffer strips	D	D		-1	-1
1	15	Loosen compacted soil layers in grassland fields	С	C			
7	16	Allow grassland field drainage systems to deteriorate	A	В			
7	180	Ditch management on arable land	Α	E			
7	181	Ditch management on grassland	Α	D			
5	19	Make use of improved genetic resources in livestock	С	C			
2	20	Use plants with improved nitrogen use efficiency	Α	Α			
2	21	Fertiliser spreader calibration	E	E	1		-1
2	22	Use a fertiliser recommendation system	F	F	1		-1
3	23	Integrate fertiliser and manure nutrient supply	E	E	1		-1
2	25	Do not apply manufactured fertiliser to high-risk areas	E	E	1		-1
2	26	Avoid spreading manufactured fertiliser to fields at high-risk times	F*	F*	1		

Output

9	Capital Cost (£m)	Operational Cost (£m)	Total Cost (£m)	Environmental Benefit (£m)	Nitrate (%)	Phosphorus (%)	Sediment (%)	Ammonia (%)	Methane (%)	Nitrous Oxide (%)	Pesticides (%)	FIOS (%)	Soil Carbon (%)	Energy Use (%)	Production (%)
4	0	42	42	108	3.7	6.7	13.1	0.0	0.0	0.5	0.4	0.1	0.0	-0.4	0.0
5	0	40	40	13	0.4	0.8	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0	170	170	16	0.7	2.1	1.6	0.0	0.0	0.1	0.1	0.0	0.0	-0.1	1.7
7	0	-45	-45	36	1.6	0.9	2.4	0.0	0.0	0.6	-2.1	0.0	0.0	1.1	0.0
8	0	37	37	28	0.4	1.6	3.3	0.0	0.0	0.5	2.1	0.1	0.0	-0.6	0.0
9	0	8	8	18	0.3	0.9	2.2	0.0	0.0	0.0	1.9	0.1	0.0	0.0	0.0
10	0	30	30	247	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	0.0	0.0	-0.1	0.0
11	0	1	1	2	0.1	0.1	0.3	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0
13	1	24	25	26	0.1	1.5	3.6	0.0	0.0	0.0	0.7	0.1	0.0	0.0	0.0
14	5	43	47	54	0.8	2.5	5.3	0.4	0.0	0.5	6.3	0.1	0.0	8.0	0.6
15	0	52	52	30	0.4	2.2	2.0	0.0	0.0	0.9	0.0	0.3	0.0	0.0	0.0
16	0	82	82	-18	0.2	0.6	0.3	0.0	0.0	-1.6	0.0	0.0	0.0	-0.2	0.0
19	0	-240	-240	20	0.2	0.4	0.0	0.9	1.7	0.4	0.0	0.0	0.0	0.0	-0.7
20	0	-52	-52	78	2.9	0.0	0.0	3.3	0.0	2.5	0.0	0.0	0.0	3.9	0.0
21	0	-25	-25	0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
22	0	-7	-7	5	0.3	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0
23	0	-138	-138	10	0.5	0.5	0.0	0.4	0.0	0.4	0.0	0.0	0.0	0.3	0.0
25	0	16	16	4	0.1	0.0	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.2	0.1
26	0	134	134	6	0.2	1.5	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.9
27	23	-42	-20	27	0.4	0.1	0.0	0.5	0.0	0.1	0.0	0.0	0.0	3.6	0.0
28	0	16	16	4	1.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
31	0	-197	-197	66	0.6	0.0	0.0	0.4	0.0	0.6	0.0	0.0	0.0	8.6	0.0
32	0	-24	-24	6	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0
34	1	-4	-3	1	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Output

Augmentation using FarmScoper

PSYCHIC: phosphorus (and sediment)

— NEAP-N: nitrate

NARSES: ammonia

MANNER: manures

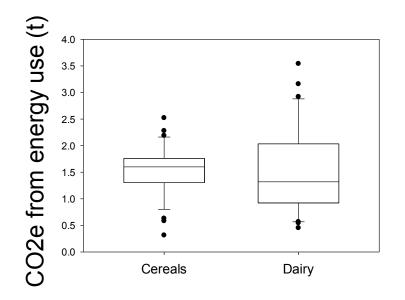
– IPCC methodologies: GHGs

Outputs of particular env. interest e.g.

Nitrate

- Ammonia

Nitrous Oxide


Sediment traps
 Pood attenuation
 Biodiversity

Output

Benchmarking – per hectare

Main Farm Type	NO ₃ -N (kg ha ⁻¹)		P (kg ha ⁻¹)		NH ₃ (kg ha ⁻¹)	Total GHG (t CO ₂ e ha ⁻¹)		
	\overline{x}	σ	\overline{x}	σ	\overline{x}	σ	\overline{x}	σ
Cereals	21.2	5.6	0.30	0.17	11.6	5.38	3.26	0.93
Dairy	24.0	10.6	0.91	0.74	37.2	15.36	12.0	4.38

d edge ponds

Output

SUSTAINABLE INTENSIFICATION RESEARCH PLATFORM

Output

Input

Farm Business Survey Benchmarking

http://www.farmbusinesssurvey.co.uk/benchmarking/

Enterprise Gross Margins

Enterprise Gross Margins

England: Winter wheat (conventional)

FBS Values

One All performers O High performers (Gross Margins est. in top 25% of population with Enterprise)

Compare On
O Percentages Pelative Rank

Enterprise Measures (£ per hectare unless stated otherwise)	FBS Values	Your values (£ per hectare unless stated otherwise)	Comparison with FBS
Crop area - conventional (non-organic) - (ha)	65.6	100	High [i]
Yield (tonnes per ha)	9.0	7.5	Low [i]
Price (£ per tonne)	129.8	107	Low [i]
Grain sales	1,167	805	Low [i]
Straw output	56	70	Average [i]
Enterprise output	1,223	875	Low [i]
Seeds	72	85	Average to High [i]
Fertilizers	206	150	Low [i]
Crop Protection	211	211	Average [i]
Other crop costs	29	12	Average [i]
Drying & Heating	6.4	2	Average to High [i]
Total Variable Costs	525	460	Average to Low [i]
Gross Margin	698	415	Low [i]

Performance Ratios

England : Dairy (conventional) : Mixed

Please note that these results are from the 2014/15 Farm Business Survey (FBS) database, where the year end of the farm accounts falls between 31 December 2014 and 5 April 2015.

FBS Values Compare On

● All performers ○ High performers (Ratio of output to input [totals] in the top 25% of FarmType) ● Percentages ○ Relative Rank

There are 151 farms in the FBS (All performers) sample fitting the above enterprise classification. The values for the measures listed below are averages for the FBS population.

			Compar	e with FBS (All performers)	
Peformance Ratio Measures (% unless stated otherwise)	FBS values	Your values (per Farm)	Comparison with FBS		
Return on tenants capital (%)	11.6	13.4	115.5%		
Return on total capital (%)	3.6	4.5	125.0%	Standard	
Labour costs per £100 turnover	8.63	6.3	73.0%	Stariuaru	
Machinery costs per £100 turnover	11.95	12.4	103.8%	Econ	
Labour plus machinery costs per £100 turnover	20.58	18.7	90.9%	indicators	
Farm business income per £100 turnover	14.05	17.40	123.8%	indicators	
Estimated electricity consumption (cost@standard-2014-input-price of 11p/kWh) (kilo Watt hours per dairy cows Livestock Unit	363	454	125.1%	+ Energy	
(LU)) Estimated fuel and oils consumption (cost@standard-2014-input-price of 47p/L for heat and 55p/L for fuels) (Litres per dairy cows Livestock Unit (LU))	144	123	85.4%	and Fuel	

*Tools for environmental farm performance

All presentations & background documents are available on the event webpage.

www.eip-agri.eu

