

EIP-AGRI Workshop Tools for environmental farm performance

7 - 8 February 2017 – Zagreb, Croatia

EIP-AGRI Workshop 'Tools for environmental farm performance' Tuesday 7 February 2017, Zagreb - Croatia

12:00 – 13:00 Registration and buffet lunch

13:00 - 13:10 Welcome words

- Iman Boot, DG Agriculture and Rural Development
- Krešimir Ivanĉić, Croatian Ministry of Agriculture

13:10 - 13:20 Icebreaker

13:20 – 13:40 Introduction to the theme of the workshop by DG AGRI

13:40 – 14:00 Setting the scene by the coordinating experts of the workshop

14:00 – 14:45 Elevator pitches, highlighting the three main reasons for which farmers may use sustainability tools (farm initiative, food chain, legislation)

Consecutive panel reflections

- Martijn Buijsse, Skylark, The Netherlands
- Vincenzo Angileri, Joint Research Centre, European Commission
- · Simon Miller, Cool Farm Tool, UK

14:45 – 15:45 Presentations of existing environmental sustainability tools

- · John Lynch, TEAGASC, Ireland
- · Romain Dieulot, FNCIVAM, France
- Kathryn Green, LEAF, UK
- François Lerin, CIHEAM-IAMM & HNV-Link Thematic Network, France
- Josien Kapma, Boer & Bunder, The Netherlands
- · Dóra Mészáros, SMART, Hungary

15:45 – 16:15 Coffee break

16:15 - 18:00 Break-out sessions

19:00 Networking dinner

EIP-AGRI Workshop 'Tools for environmental farm performance' Wednesday 8 February 2017, Zagreb - Croatia

09:00 – 09:30 Energiser exercise
Summary of previous day and conclusions by coordinating experts
Janet Dwyer and Marta Pérez-Soba

09:30 - 10:30 Break-out session

- What does the ideal tool look like to you?
- What can you do to make such a tool become a reality?

10:30 - 11:00 Coffee break

11:00 – 11:45 Break-out session (continued)

 If you would start an EIP-AGRI Operational Group to design the ideal tool, what would be the main problem to solve or opportunity to take, who would be the partners and how would you design the project?

11:45 – 12:00 Harvesting

12:00 - 12:30 Plenary session

• What happens after the event? Concrete ideas for follow-up actions

12:30 - 13:30 Lunch and departure

SUSTAINABILITY TOOL OF RESEAU CIVAM THE "DIAGNOSIS OF SUSTAINABILITY"

FOCUS ON ENVIRONMENTAL FARM PERFORMANCE

RÉSEAU CIVAM CAMPAGNES VIVANTES

WHY MEASURING SUSTAINABILITY?

- Alarming global context regarding environment => questions agricultural model
- 'Réseau Civam' = farmer's organization for farm's sustainability improvement
 - Based on economical and autonomous farming system.
 - Supports farmers in their changing system by capitalization of technical and economic baseline from collective groups, and diffusion for adaptation in each territorial particularities.
 - To promote the interest of those farming systems, it is necessary to measure their results and knowing if they are performant and in what are they performant?
 - ⇒ Are they a relevant answer to the identified stakes, especially regarding environmental sustainability?
- System of sustainability performance assessment with 2 main objectives:
 - Create reference for benchmarking and reporting performances of sustainable farming systems.
 - Increasing decision making outcomy of formers

METHODOLOGY

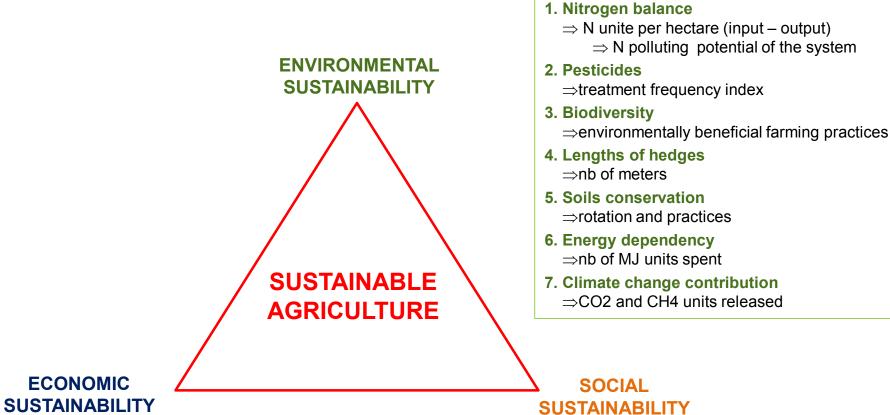
- Global approach of :
 - sustainability : 3 pilars => economic, social, environmental
 - farming system : systemic analysis
- Indicators
 - -selected by farmers themselves
 - –2 kinds : quantified/subjectives

TOOL: DIAGNOSIS OF SUSTAINABILITY

- Exchange facilitation tool // description of reality
- Easily usable by advisors, farmers, students :
 - 3 sections x 7 performance criteria calculated by indicators.
 - 3-4 hours to fulfill
- Data accessible : accountability + interview
- Appropriable indicators : calculation explained => pedagogy
- Results: 3 radars and a scoring scale + comments (SWOT, obj.)
- Raw data are collected for benchmarking and analysis
- Tool open source : scoring can be adapted

HOW TO USE IT

- Collective meetings : Analysis to initiate exchanges and discussions
 - > Advisors = facilitators trained + exchange groups of users
- Collection => reference for farmers, students, advisors, authorities...
- Education : obligatory tool in agricultural classes


ECONOMIC

valorisation of input

2. ...

1. Economic efficiency => good

Use of the land

7. Land footprint

6. Efficiency of land use to create income

HOW DOES IT WORK?

USER GUIDE

Performance criteria

Meaning, interest & limits

1er critère : Bilan des minéraux ou apparent

Utiliser l'onglet « calcul bilan N » du tableur pour calculer ce critère.

Indicateur	Barème	Points
	> 100 uN/ha	0
Unités d'azote	80 à 100 uN/ha	1
par ha de SAU	60 à 80 uN/ha	2
	40 à 60 uN/ha	3
	20 à 40 uN/ha	4
	< 20 uN/ha	5

Traduit l'importance globale des excédents d'azote par un bilan entre les entrées et les sorties, c'est à dire l'efficacité de l'utilisation de l'azote par le système de production. L'excédent est un potentiel polluant, qui sera piégé, lessivé ou volatilisé selon les pratiques et les formes de l'N.

Calculatio

Indicator

Scoring Scale

Bilan des minéraux = entrées (engrais organiques et minéraux, concentrés, achats d'animaux, fixation par légumineuses, fourrages grossiers) - sorties (produits laitiers, viandes ou cultures, fourrages grossiers, engrais norganiques). Il faut ajouter au résultat 10 uN liés aux dépôts atmosphériques.

[✓] NB : les quantités d'azote atmosphérique fixées par les légumineuses peuvent être relativisées au regard des économies d'ammonitrates qu'elles permettent (Quantité N atmosphérique x 1,033 = Tonnes d'ammonitrate économisées).

HOW DOES IT WORK?

T ammonitrates "économisées"

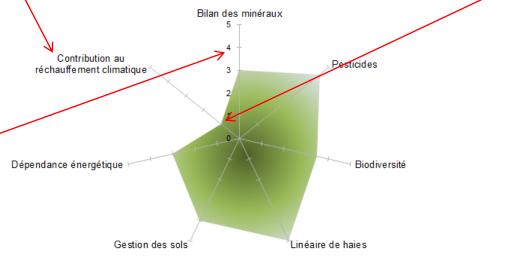
par la fixation d'N atmosphérique

3,3

Billian de a min forcos										T . II . 000			-
Bilan des minérau	IX				Nature de l'intrant	Quantité utilisée	Energie dépensée par unité	TOTAL MJ	CO2 émis par unité	Total kg CO2 émis	Calcul émissions CH4	Nb d'animaux	Total kg CH4 émis
					FIOUL de la cuve et/ou CUMA eta	6 948	45.6 MJ/litre	316806	3,24 kg ég CO2/litre	22510	Porcs, truies, verrats		0
		N	Р	K	Electricité	10 935	10.4 MJ/kWh	113724	0,078 kg éq CO2/kWh	853	Vaches laitières	49	5767
Entrées		kg N	kg P	kg K	Gaz	0	55,7 MJ/kg	0	3,41 kg éq CO2/kg	033	Veaux moins de 1 an hors veaux de 8-15 jours	15	375
E1 - Engrais chimiques		0	0	0	Engrais azoté	0	54,3 MJ/kg N	0	5,334 kg éq CO2/kg	0	Génisses 1-2 ans (bovin lait)	15	932
E2 - Engrais organiques		0	0	0	Céréales achetées	0	2,7 MJ/kg	0	0,354 kg éq CO2/kg	0	Mâles 1-2 ans (bovin lait)	13	0
E3 - Azote atmosphérique	ue par les légumineu				Tourteau de soia	0	5.7 MJ/kg	0	1,579 kg éq CO2/kg	0	Génisses +2 ans (bovin lait)	5	194
E4 - Aliments		836	156	173	Tourteau de colza	11 300	3,3 MJ/kg	37290	0,460 kg éq CO2/kg	5198	Vaches allaitantes	,	0
E5 - Animaux		0	0	0	Tourteau de tournesol	0	3,2 MJ/kg	0	0,294 kg éq CO2/kg	0	Femelles 0 - 9 mois (bovin viande)		0
	Total	4001	156	173	Luzerne deshydratée	0	13,2 MJ/kg	0	0,961 kg éq CO2/kg	0	Femelles 9-12 mois (bovin viande)		0
е	entrées	4001			Concentrés composés - farine	0	2,5 MJ/kg	0	0,3 kg éq CO2/kg	0	Génisses 1-2 ans (bovin viande)		0
					Concentrés composés - granulés	7 200	4 MJ/kg	28800	0,6 kg éq CO2/kg	4320	Génisses +2 ans (bovin viande)		0
		N	P	K	Poudre de lait	0	43.3 MJ/ka	0	0,11 kg éq CO2/kg	0	Mâles 0 - 9 mois (bovin viande)		0
Sorties		kg N	kg P	kg K	Bâches ou enrubannage	150	87 MJ/kg	13050	2,59 kg éq CO2/kg	389	Mâles 9 - 12 mois (bovin viande)		0
S1 - Engrais organiques		0	0	0			Total MJ	509 670	Total kg CO2	33 269	Mâles 1-2 ans (bovin viande)		0
S2 - Végétaux		0	0	0			Total EQF	14 271			Mâles +2 ans (bovin viande ou lait dt taureau)		0
S3 - Légumes		0	0	0			Total EQF/ha SAU	306			Béliers		0
S4 - Lait et œufs		1710	294	480							Brebis laitières		0
S5 - Animaux		190	55	32							Agnelles laitières		0
	Total	1900	350	512							Agneaux		0
	sorties										Brebis allaitantes		0
							TOTAL (GES EMIS SUR I	LA FERME		Agnelles allaitantes		0
		N	Р	K			TOTAL ton	ne CO2	33,26933		Chèvres		0
		kg N	kg P	kg K			TOTAL ton	ne CH4	7,2673		Chevrettes		0
SAU (ha)	Solde du	2102	-193	-339	Ce calculateur utilise les données du lo	giciel Dia'Terre®.	TOTAL tonne	e éq. CO2	236,75373		Boucs		0
crit (iiu)	bilan	2102			Pour en savoir plus : www.ac	leme.fr	me.fr TOTAL tonne éq. CO2/ha SAU		5,1		Total kg CH4	7	267
46,6		_	Jkg P/ha SAI	kg K/ha SAU					1				
	Solde du	45	-4	-7									
	bilan / ha	70 4	*		1			/	/				
	,			00									
	dont N atr	n / ha fixé p	ar les leg.	68			_						

Data

Data


Score

HOW DOES IT WORK?

Scoring scale

- Visual presentation
 - = 3 radars
- Scoring scale can be adapted
- Disaggregated results (inter + intra)
- => Management tool more than rating tool

WHAT ARE THE BENEFITS?

For the farmers:

- To step back and to adopt a global approach of their farming system
- To benchmark their data to share practices and experiments
- To determine relevant indicators that meet their personal expectations and then define quantify target to evolve
- To have their environmental practices recognized and valued

For the environment:

- To consider environmental approach of sustainability as important as the other.
- To make links between economic, social and environmental concerns.
 - ⇒ global approach in the analysis. Ex : environ^{tal} efficiency => economic efficiency.
- To measure environmental impacts in agroecology state policies.
 - ⇒ diagnosis identified for : Ecophyto II, GIEE, MAEC (CAP 2nd pillar).

For the students:

1st sustainability tool used by students in France (50 visits/day)

A described to the first second of the control of t

KEYS TO BE USEFUL?

- Adopt a global approach
 - ⇒ environmental sustainability is linked to economic and social
- □ Allow appropriation by farmers => > self-made decision
 - ⇒ to select relevant indicators to define their own objectives.
 - ⇒ open source, adapted scoring scale
- Cooperation model :
 - Collective discussions are more important than the data to make a decision and change
- Role of advisors => accompany, facilitate discussion and exchange
- Ressources to change their system : short and long-term management

*Tools for environmental farm performance

All presentations & background documents are available on the event webpage.

www.eip-agri.eu

